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Abstract. We investigate the process of ripple formation in a viscous fluid when a sand bed is submitted
to a laminar shear flow. We propose a new description for the sand transport which takes into account the
fact that the transport rate does not adapt instantaneously to a change of the fluid velocity due to grain
inertia. It introduces a new length, called here after equilibrium length leq , corresponding to the distance
needed for a immobile grain to equilibrate its velocity with that of the fluid. The transport rate is therefore
found to depend not only on the fluid shear stress and bed slope (as usually assumed) but also on grain
inertia. Within the framework of this model we analyzed the mechanisms of the sand bed instability. It is
found that the instability results from the competition between the destabilizing effect of fluid inertia and
the stabilizing ones of grain inertia and bed slope. We derive analytical scaling laws for the most amplified
wavelength, its growth rate and phase velocity. We found in particular that at small particle Reynolds
number Rep, the most amplified wavelength scales as the viscous length lν defined as

√
ν/γ (where γ is

the shear rate and ν the fluid viscosity) and at large Rep it scales as the equilibrium length leq . Our results
are compared with available experimental data.

PACS. 45.70.-n Granular systems – 47.15.-x Laminar flows – 47.54.+r Pattern selection; pattern formation

1 Introduction

When an initially flat sand bed is sheared by a fluid, the
bed is unstable and gives rise to formation of ripples.
This generic sand pattern results from a complex feed-
back mechanism between the flow and the bed form. At
the first stages of the pattern formation, the bed develops
a regular pattern of small-amplitude waves which further
evolves toward an equilibrium bedform generally of much
greater extent. Despite the huge number of experimental
and theoretical studies about ripple formation, this prob-
lem is not well understood and even the physical origin
of the instability mechanism is questioned. This is essen-
tially due to the fact that there exists no well-established
equations describing the coupling between the fluid and
the bed form.

Several configurations have been investigated depend-
ing on the oscillatory or steady nature of the flow. Ripples
observed in sees along beaches are an example correspond-
ing to the oscillating case whereas those forming in rivers
illustrate the steady configuration. Another important pa-
rameter is the flow depth. In shallow water, deformation
of the upper fluid surface couples with the sand bed. This
coupling becomes irrelevant when the flow depth is great
enough.
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The classical way of dealing with the problem of rip-
ple formation is as follows. The deformation of the sand
bed is generally assumed slow compared with the fluid ve-
locity such that the flow over a slightly deformed bed is
calculated as if it were fixed. The fluid shear stress at the
bed surface is then derived and the corresponding grain
transport rate is calculated using semi-empirical laws. The
most commonly used law is that of Meyer-Peter [1] which
reads:

q ∝ σ
3/2
b (1)

where q is the grain transport rate and σb the fluid shear
stress at the sand bed surface. The growth rate of the bed
modes is then deduced from mass conservation equation

∂h

∂t
= − ∂q

∂x
(2)

where h is the height of the sand bed and x is the spa-
tial horizontal coordinate The bed instability develops as
soon as there is a positive phase lag between the bed pro-
file and the transport rate. More precisely, if h ∼ eikx+ωt

and q ∼ heiψ(k) (where k is the wavenumber of the pro-
file perturbation, ω its growth rate, and ψ is the phase
shift of the transport rate; the proportionality between h
and q is justified within the framework of a linear anal-
ysis), the growth rate of the mode k is given by: ω =
k[sinψ(k)−i cosψ(k)]. The bed is unstable if there exists a
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band of modes k for which the real part of the growth rate
is positive, i.e., π > ψ(k) > 0. In other words, a mode k
is unstable when the local transport rate reaches its max-
imum value just before the maximum of the bed height.
As the transport rate is related to the flow shear stress at
the bed, it also means that the latter is shifted upstream
in comparison to the bed height profile.

The first theoretical works concerning the stability
analysis of the fluid-bed interface [2–4] were based on
potential flow models to describe the flow over the bed.
Unfortunately, within these models, there is no phase lag
between the local flow condition and the bed profile. In
order to get an instability, most authors [2–4] put artifi-
cially by hands a phase lag for which it is difficult to asso-
ciate appropriate values for flow systems. More recently,
Fenton et al. [5] showed that potential flow models where
an explicit phase lag is adopted results in predictions that
are not consistent with observed flow systems. They re-
assessed these potential flow models without the use of
explicit lag and by releasing the usual quasi-steadiness ap-
proximation. Instability is shown to occur via a resonance
mechanism between surface waves and bed waves travel-
ing at the same celerity. However, the prediction of the
unstable wavelengths are not consistent with observations
of physical flow systems. Fenton et al. conclude therefore
that potential flow should no longer form the basis of the
instability describing bed form generation from the flat
bed condition.

Another approach is to use rotational flow models,
as those developed by Richards [6], and Sumer and
Bakioglu [7]. Within these models, the turbulent flow
close to the bed is described via a height dependent
eddy-viscosity approach. Two mains results follow. (i) The
turbulent flow shear stress appears to follow the bed
perturbation with a phase lag which generates the bed
instability, whereas gravitational force acts as a stabi-
lizing mechanism at short wavelength (gravity impedes
grain motion up stoss slopes and aids it down lee slope).
(ii) Two separate unstable modes corresponding to forma-
tion of dunes (i.e., the large scale structure) and ripples
(i.e., the small scale one) respectively are predicted. The
first one is function of the roughness height y0 of the bed,
the effect of the local bed slope on bed load sediment
transport (characterized by the intern angle φs of friction
of the granular material) and the depth H of the flow.
For the second mode of instability, λ = 2π/k depends
solely of φs and y0: λ ∼ f(φs)y0 where f is a increasing
function of φs. The parameter y0 scales as a first approx-
imation with the diameter d of the grain. Nikuradse [8]
found a value of y0 = d/30 for fixed bed made of single
grain size. However, this value seems underestimated for
erodible bed. Smith and Mc Lean [9] indeed showed that
for flows over a mobile bed the moving sediment will affect
the value of y0. The value generally adopted is y0 � 4d.
Taking this value, the prediction of such turbulent models
predicts an initial wavelength of the structure compara-
ble with that of observed ripples in the experiments of
Coleman and Melville [10] but it is much shorter than
that observed in other experiments [11].

The first limitation of these turbulent flow models is
the difficulty to associate appropriate values for y0 which
depends on intricate parameters (flow shear stress, height
of the bed-load layer, grain diameter). Furthermore the ef-
fective roughness of the bed increases as the ripples grow.
Second, the prediction of turbulent models seems very sen-
sitive to the parametrisation used to model the turbulence.

A natural question arises: is the turbulence neces-
sary to observe the formation of ripples? Recently Charru
et al. [12] addressed this issue and showed theoretically
that a viscous flow may be responsible for the bed in-
stability. This prediction has been confirmed recently by
Rabaud et al. [13] through a quasi-2D flow experiment.
The case of a viscous flow presents the great advantage
to be solved much more easily without approximation
and offers deep insights into the instability mechanism.
Charru et al., using a rate transport law similar to that of
Meyer-Peter formula (Eq. (1)), found that for high fluid
thickness, the flat bed is unstable as soon as the grains
move and that the most dangerous wavelength scales with
the viscous length lν = (ν/γ)1/2, where ν is the fluid vis-
cosity and γ the fluid shear rate. This results from the
competition between the destabilizing effect of fluid iner-
tia (which generates a lag between the flow shear stress
and the bed perturbation) and the stabilizing one due to
gravity already mentioned above. It is important to note
that the lag is generated by the coupling between the fluid
inertia and the viscous effects. An inviscid flow, or a Stokes
flow, does not exhibit such a phase lag. Within this viscous
flow model, the predicted most dangerous wavelength is
still underestimated (by a factor of 10) in comparison with
data furnished by available experiments [13].

We present in this article a new model describing the
process of ripple formation in the case of a laminar shear
flow. More precisely, our model takes into account the
grain inertia in the evaluation of the sediment transport,
which seems to play an important role in the selection
of the most amplified unstable wavelength. Due to grain
inertia, the flux of transported sediment does not equili-
brate instantaneously with the fluid velocity. As a conse-
quence, there exists a lag between the sediment transport
and the fluid velocity. This lag introduces an additional
stabilizing mechanism which affects the selection of the
most dangerous mode. As to be seen further, this lag can
be expressed in terms of a characteristic length, called
hereafter ‘equilibrium length’, that is associated with the
distance needed for an immobile grain to equilibrate its
velocity with that of the fluid.

Within this model, we derive new analytical scaling
laws for the most dangerous mode which is found to be a
combination between the viscous length and the equilib-
rium length. Moreover, the estimation of the most dan-
gerous wavelength, in the regimes where grain inertia is
pertinent, seems to be in reasonable agreement with avail-
able experimental data.

We should emphasize that in the majority of exper-
iments and natural conditions where ripple formation
occurs, the flow is turbulent. Our analysis is not in-
tended to describe those situations but rather to apply



A. Valance and V. Langlois: Ripple formation over a sand bed submitted to a laminar shear flow 285

to experiments carried out within quasi-2D flows (e.g., in
Hele-Shaw cell), where flows are expected to remain lam-
inar at large flow speed, as to be seen further. Although
these limitations, such laminar analyses present yet some
great interest because first, they provides us with analyti-
cal expressions for the wavelength, the growth rate and the
drift velocity of the ripple pattern as a function the physi-
cal parameters of the problem (grain diameter, shear rate,
fluid viscosity), and, second, they allow to clearly identify
the influence of the physical mechanisms introduced in the
model.

The article is organized as follows. In Section 2, we
present the model equations and discuss the approxima-
tions used to solve them. The basic solution of the model
corresponding to a flat sand bed is analyzed in Section 3,
whereas Section 4 is devoted to the presentation of the lin-
ear stability analysis and its predictions about the growth
rate and drift velocity of unstable modes. Finally, discus-
sion and conclusion are presented in Section 5.

2 Model equations

We consider a laminar shear fluid flow over a deformed
sand bed (see Fig. 1). The bed deformation is assumed
to have dimensions small compared with the width L of
the flow. The fluid is viscous and Newtonian, and the
speed U∞ at y = L is fixed by the operator. Furthermore,
we will restrict ourselves to a two-dimensional analysis.
In other words, we assume that the bed deformation is in-
variant along the horizontal direction perpendicular to the
fluid flow. We first briefly present the fluid motion equa-
tions together with the boundary conditions employed.
Then we describe the model used for sediment transport.

2.1 Hydrodynamic equations

The motion equations of the fluid reads:

ρf
∂u
∂t

+ ρf (u · ∇)u = −∇p+ η∇2u, (3)

∇ · u = 0, (4)

where u = (U, V ) is the fluid velocity, ρf the fluid viscos-
ity, η the dynamic fluid viscosity (η = ρfν, ν being the
kinematic density) and p is the fluid pressure. The bound-
ary conditions at the top surface (i.e., y = L) are given
by:

U = U∞ and V = 0, (5)

whereas at the sand bed surface one imposes the following
conditions:

−∂h
∂x

U + V =
∂h

∂t
, (6)

U +
∂h

∂x
V = 0. (7)

h measures the local height of the sand bed. Equation (6)
expresses the fact that the fluid velocity normal to the bed

��������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

y

x

L

Sand Bed

Shear Flow

infinityPlate moving at U

Fig. 1. Two-dimensional laminar shear flow over a deformed
sand bed.

surface, vn, is equal to the normal displacement speed of
the bed surface, and equation (7) stands for the no-slip
condition at the sand bed surface. The latter condition
can be legitimately questioned since some grains of the
top layer of the sand bed are moving. However, the con-
dition used at the sand bed surface (zero or non-zero slip
velocity) is not really crucial because, as to be seen below,
it is the bed shear stress, which determines the transport
rate.

2.2 Sediment transport and bed profile evolution

It is common to describe the sediment transport in viscous
fluids (like water) in terms of two main transport modes:
bed load and suspended load [1]. The bed load is defined as
the part of the total load that is more or less in continuous
contact with the bed during the transport. Thus the bed
load is determined almost exclusively by the effective bed
shear acting directly on the sand surface. The suspended
load is the part of the total load that is moving without
continuous contact with the bed. We choose to concen-
trate on the bed-load sediment and neglect the transport
of suspended material. This is not a real short-coming as
in the ripple formation process bed-load transport is usu-
ally dominant.

We will first present the classical model used to de-
scribe the sand transport and then introduce the changes
needed to take into account grain inertia. Let us call q(x, t)
the vertically integrated volumetric sand flux. The sand
flux is linked to the height h(x, t) of the sand bed profile
via the mass conservation equation:

∂h

∂t
= − ∂q

∂x
. (8)

The sand flux is usually taken to be equal to an ‘equi-
librium’ value qeq estimated from steady and fully devel-
oped regimes. A lot of semi-empirical expressions for the
equilibrium sand flux have been proposed and have the
following generic form [1]:

qeq = qb (Θ −Θc)n, (9)

where qb is proportional to a volumetric sediment trans-
port: qb = c

√
(s− 1)gd3 (c being a numerical constant).
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Θ denotes the Shields parameter defined by

Θ =
σb

ρfg(s− 1)d
, (10)

where σb is the bed shear stress and s = ρg/ρf is the rela-
tive density of the grains with respect to the fluid density.
Θc is the critical Shields parameter above which sediment
starts to move and depends on the bed slope. The de-
pendence of Θc with the bed slope is usually modeled as
follows [1]:

Θ = Θc0 cosφ
(

1 − tanφ
tanφs

)

=
Θc0√
1 + h2

x

(
1 +

hx
tanφs

)
, (11)

in which φ is the angle of the bed slope and Θc0 indicates
the critical Shields parameter on a bed with no slope. The
parameter φs is the intern angle of friction of the gran-
ular material. There exist various estimates of the crit-
ical Shields parameter available in the literature [1,20].
The spectrum of the reported values (from 0.05 to 0.35) is
quite large, reflecting the difficulty of defining this thresh-
old with accuracy. Moreover, the threshold is expected to
be extremely sensitive to the features of the grain packing
in the sand bed (loose or close-packed arrangement). For
our purpose, we will take an average value Θc0 ≈ 0.2.

The laws used in the literature to model the sediment
transport have the form of equation (9) with a definite
value for the exponent n. In the Meyer-Peter law [1], n =
3/2 and c = 8, whereas Bagnold [21] proposed a sediment
transport law with n = 3. We will see that the value of n
is unimportant when one remains in the framework of a
linear analysis of the sand bed profile evolution.

The standard approximation is to consider that the
actual sand flux is equal to the equilibrium value: q = qeq.
That means that one implicitly assumes that the sand
flux adapts instantaneously to a change of the fluid veloc-
ity. Here, one will consider that this is not the case due
to grain inertia. Indeed, if the fluid velocity increases, it
takes some time for the grains, initially at rest, to reach
the fluid velocity. This characteric equilibrium time can
be associated with an equilibrium length leq, which cor-
responds the distance needed for grains, initially at rest,
to equilibrate their velocity with that of the fluid. This
concept of equilibrium length has been also introduced in
the context of aeolian sand transport [14]. There exist dif-
ferent possible approaches to describe the evolution of the
sand flux towards its equilibrium value qeq. We will take,
for sake of simplicity, a simple relaxation law, which can
be written as

∂q

∂x
= −q − qeq

leq
. (12)

This equation is analog to that used in the context of ae-
olian sand transport [14–16]. It is also worth noting that
this equation can be derived from a “BCRE-like” approach
which quantifies the balance between the erosion and de-
position processes [17,18].
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Fig. 2. Equilibrium length as a function of the particle
Reynolds number. For Rep < 10, leq ∼ Rep d (dotted curve),
whereas leq becomes independent of Rep for large Rep (dashed
curve).

Equations (8) and (12) together with equation (9) con-
stitute the evolution equations of our model. Finally, we
should provide an estimation of the equilibrium length
as a function of the physical parameters of our system.
The precise determination of the equilibrium length is
quite difficult due to the complex interactions between
the fluid and the grains. However, we can have a crude
approximation assuming that the moving grains roll on
the sand bed surface and undergo a drag force, Fd =
0.125 cd ρf π d2 v2

r , where vr is the relative velocity of the
grain with respect to that of the fluid, ρf is the fluid den-
sity and cd is the drag coefficient which depends on the
particle Reynolds number. (cd will be taken to be equal to
cd = 24.0/Rep + 6.0/(1.0 +

√
Rep) + 0.4, [19]). Consider-

ing, in addition, that the equilibrium velocity is given, to
zero order, by γd/2 (where γ is the flow shear rate), ones
find:

leq = f (Rep)
ρg
ρf
d, (13)

where ρg is the grain density and f is a function of the
particle Reynolds number Rep = γd2/ν. When Rep < 1,
f � 0.035Rep and for Rep > 104, f approaches the con-
stant value 3.3. For intermediate particle Reynolds num-
ber (i.e., 1 < Re < 103), the function f can be well fitted
by: f(Rep) � 0.035Rep/(1 + 0.087Re0.75p ). The equilib-
rium length is plotted as a function of Rep in Figure 2. In
water, this length is of order of d×f(Rep) since ρg and ρf
are of the same order of magnitude. As a consequence,
for small particle Reynolds number (i.e., Rep � 1), leq
is much smaller than the particle diameter, which means
that leq can be considered as reduced to zero in the frame-
work of a continuum theory for the description of the gran-
ular bed surface.

2.3 Simplification of the problem

We will assume that the typical hydrodynamical time
is much smaller than the typical morphological time. In
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other words, it means that the flow adapts itself instan-
taneously to the bed profile. We will therefore solve the
stationary version of the hydrodynamical equations for a
fixed bed profile. Flow equations reduce then to

ρf(u · ∇)u = −∇p+ η∇2u, (14)
∇ · u = 0, (15)

and the boundary conditions at the sand bed surface read

−∂h
∂x

U + V = 0, (16)

U +
∂h

∂x
V = 0. (17)

The evolution equations for the sand bed profile and
the sand flux are unchanged and are given by:

∂q

∂x
= −q − qeq

leq
, (18)

∂h

∂t
= − ∂q

∂x
, (19)

where qeq is given by

qeq = qb

[

Θ − Θc0√
1 + h2

x

(
1 +

hx
tanφs

)]n

. (20)

In the case where the saturation length leq goes to zero,
we recover the classical expression for the bed profile evo-
lution: ∂h/∂t = −∂qeq/∂x.

3 Basic state

The basic state corresponds to the solution of the model
equations when the sand bed surface remains flat and hor-
izontal. In that case, the flow velocity profile U0(y) is given
by a simple linear profile:

U0(y) = U∞
y

L
= γ y. (21)

We recall that γ is the shear rate and L the thickness of
the flow.

In the basic state, the flux of transported grains q0 is
easily calculated. It reads:

q0 = qb(Θ0 −Θc0)n, (22)

where Θ0 = νγ/g(s − 1)d is the shield parameter corre-
sponding to a flat sand bed.

4 Linear stability analysis

In order to study the formation of the ripple pattern,
we perturb the sand bed so that the profile looks like
h = h1e

ikx+ωt where h1 is a small quantity. Note that
the wavenumber k characterizes the spacing of the crests
and ω denotes the growth rate of the bed pattern. In
the following we will use dimensionless variables. We will
choose the inverse wavenumber k−1 as unit length and the
inverse shear rate γ−1 = (U∞/L)−1 as unit time.

4.1 Perturbed flow

We will first calculate the flow perturbation, the bed pro-
file being kept fixed. The calculation strategy used here
is the same as that exposed in [22]. However, we find it
worthwhile to recall the main lines. The perturbed flow
quantities can be written as a vector:






U
V
P
h




 =






U0(y)
0
P0

0




 + eikx+ωt






U1(y)
V1(y)
P1(y)
h1




 . (23)

Note that the subscript 0 refers to the basic solution cor-
responding to a flat sand bed whereas the subscript 1 de-
notes perturbed quantities. Plugging equation (23) into
the momentum and mass conservation equations (14–15)
and keeping only the linear terms, we get:

β2

(
∂2U1

∂y2
− U1

)
= iyU1 + V1 + iP1, (24)

β2

(
∂2V1

∂y2
− V1

)
= iyV1 +

∂P1

∂y
, (25)

iU1 +
∂V1

∂y
= 0, (26)

with the following boundary conditions:

y = 0 : U1 = −h1 , V1 = 0, (27)
y = α : U1 = 0 , V1 = 0. (28)

We have introduced two dimensionless parameters α
and β:

α = kL , β = k(ν/γ)1/2. (29)

β corresponds to a dimensionless viscous length: β = klv
with lv = (ν/γ)1/2.

The exact solution of (24), (25) and (26) can be ob-
tained via the resolution of the equation for the vortic-
ity Ω1 which reads:

β2

(
∂2Ω1

∂y2
−Ω1

)
= iyΩ1, (30)

where Ω1 is defined by Ω1 = ∂xV1 − ∂yU1

The solution of equation (30) is a linear combination
of Airy functions Ai and Bi:

Ω1(y) = C1Ai(Y ) + C2Bi(Y ), (31)

with Y = eiπ/6(y − iβ2)/β2/3. Then, the stream func-
tion ψ1 (defined as U1 = ∂yψ1 and V1 = −∂xψ1) can be
obtained from the equation:

∂2
yψ1 − ψ1 = −Ω1, (32)

whose solution is

ψ1(y) =
1
2

{
e−y

∫ y

0

dξΩ1(ξ)eξ − ey
∫ y

0

dξΩ1(ξ)e−ξ
}

+ C3e
−y + C4e

y. (33)
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The constant C1, C2, C3 and C4 are determined by the
boundary conditions (27–28) (see Appendix).

As stated previously, we assume that the flow thick-
ness L is much larger than the characteristic length scales
of the sand bed deformation. In particular, L is assumed to
be much larger than the wavelength of the sand pattern,
so that α = kL � 1. In this limit, the stream function
takes the following simple form:

ψ1(y) = −h1

{
e−y

∫ y

0

dξAi(ξ′)eξ − ey
∫ y

0

dξAi(ξ′)e−ξ
}

/

{
2

∫ ∞

0

dξe−ξAi(ξ′)
}
− h1 sinh(y), (34)

where ξ′ = eiπ/6(ξ − iβ2)/β2/3. The perturbed bed shear
stress σ1b can then be easily calculated:

σ1b

ηγ
=
∂2ψ1

∂y2
(y = 0) =

h1Ai(−ieiπ/6β4/3)
∫ ∞
0 e−ξAi(ξ′)dξ

. (35)

We can derive an approximate analytical expression
for σ1 in two limit cases: (i) when the wavelength of the
bed profile is much larger than the viscous length lv (i.e.,
β � 1) and (ii) when it is much smaller than lv (i.e.,
β � 1). For β � 1, we get:

σ1b

ηγ
=
h1

lν

[
1.06 eiπ/6β1/3 + 0.83 β + 0.43 eiπ/3β5/3

+O
(
β7/3

)]
, (36)

and for β � 1, we obtain:

σ1b

ηγ
=
h1

lν

[
2β +

i

2β
+O

(
1
β3

)]
. (37)

In Figure 3, we have plotted the real and imaginary part
of the perturbed bed shear stress. We can note that it
exhibits a positive phase lag ψ [ψ = Re(σ1b)/Im(σ1b)] with
respect to the bed perturbation due to the existence of a
non zero imaginary part. As explained in the introduction,
this phase lag will be responsible for the bed instability.
For short wavelength perturbation, the phase lag vanishes
to zero.

4.2 Growth rate and drift velocity

We are now in position to calculate the growth rate ω
of the bed profile perturbation. The linearization of the
equilibrium sediment flux expression [see Eq. (20)] gives:

qeq = q(0)eq + q(1)eq (38)

with

q(1)eq = n qbΘ
n
c0 µ

n−1

[
Θ1

Θc0
− h1x

tanφs

]
, (39)

We set µ = (Θ0 − Θc0)/Θc0. The parameter µ measures
the distance from the threshold of grain motion and will
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Fig. 3. Real and imaginary parts of the perturbed bed shear
stress calculated from the exact expression. h1/lν = 0.2.

be referred to as the relative shear stress excess. The first
term in equation (39) encodes the hydrodynamical drag
while the second one describes the bed slope effect (or
gravity effect) on the sediment transport.

Linearizing the equations governing the sediment
transport [Eqs. (19–18)] and using equation (39), we get
a close expression for the growth rate of the perturbation
of wave number k:

ω = n qbΘ
n
c0 µ

n−1

[
−i Θ1

Θc0

k

h1
− k2

tanφs

]

× (1 − ikleq)(
1 + k2l2eq

) . (40)

The above expression for the growth rate is only valid
for µ > 0.

In order to identify the physical mechanisms responsi-
ble for the ripple instability, we will treat different limiting
cases according to the values of the parameters φs (the
intern angle of friction of the granular material) and leq
(the equilibrium length), before we handle the general
situation.

4.2.1 Case: No gravity and no inertia

In case where gravity and grain inertia are ignored (i.e.,
φs = π/2 and leq = 0), we find that the growth rate is
given in the long wavelength limit (i.e., β � 1) by

Re(ω)=
d2

l2ν
ω0 µ

m−1 (1 + µ)
[
0.53 β4/3+O

(
β8/3

)]
, (41)

Im(ω) = −d
2

l2ν
ω0 µ

n−1 (1 + µ)
[
0.92 β4/3 +O

(
β2

)]
, (42)
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Fig. 4. Real (continuous line) and imaginary part (dash line)
of the growth rate in the case where bed slope and grain inertia
effects are ignored. µ = 0.1, ν = 10−6 m2/s and d = 100 µm.

whereas for large β, we obtain to dominant order:

Re(ω) = 0.5
d2

l2ν
ω0 µ

n−1 (1 + µ), (43)

Im(ω) = −2
d2

l2ν
ω0 µ

n−1 (1 + µ)β2. (44)

We set ω0 = n(qb/d2)Θnc0. These results are illustrated
in Figure 4. A positive growth rate indicates an unstable
mode. We can see that the real part of ω is positive what-
ever the value of k: it grows first as k4/3 and saturates to
a finite value at large k. Such an analysis predicts there-
fore that all waves grow and furthermore the shorter the
wave the faster the growth. As a first conclusion, the prop-
erties of the viscous flow leads to a sand bed instability,
generated by the phase lag between the bed shear stress
and the bed perturbation which is due to fluid inertia.
Secondly, according to the present analysis, the shortest
waves should dominate which is obviously unrealistic. To
circumvent this problem and to damp the growth of the
short waves, both neglected effects (i.e., gravity and grain
inertia) should be considered.

4.2.2 Case: Gravity and no inertia

We first introduce the bed slope effect on sediment trans-
port (i.e., φs �= π/2), still neglecting grain inertia. In this
situation and in the long wavelength limit, the growth rate
reads:

Re(ω) =
d2

l2ν
ω0 µ

n−1

[
0.53 (1 + µ)β4/3 − β2

tanφs

]
, (45)

Im(ω) = −0.92
d2

l2ν
ω0 µ

n−1(1 + µ)β4/3. (46)

The variation of the growth grate as a function of the
relative shear stress excess µ is shown in Figure 5. One
can note that the bed slope effect [corresponding to the
term proportional to k2 in Eq. (45)] acts as a stabilizing
mechanism: it damps the short waves. As a consequence,
a fastest growing wave appears. Its order of magnitude is
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Fig. 5. Real and imaginary parts of the growth rate for µ = 0.1
and µ = 0.5 in the case where grain inertia effect is ignored.
φs = 300, Θc0 = 0.2, s = 2.7 ν = 10−6 m2/s, and d = 100 µm.

given by the balance of the hydrodynamical term and the
gravity one in equation (45). One gets:

λmax =
2π
kmax

� 30 lν
(tanφs)3/2(1 + µ)3/2

. (47)

In the latter expression, we should be aware of that the
viscous length lν =

√
ν/γ and µ are not independent vari-

ables. We recall that µ measures the distance from the
grain motion threshold: µ = γν/g(s − 1)dΘc0 − 1. It fol-
lows that given the grain density ρg, the grain diameter d
and the fluid viscosity ν, choosing a value for µ amounts
to fix the shear rate γ. Expressing γ as a function of µ,
the expression for the most dangerous wavelength can be
rewritten as:

λmax =
30

Θ
1/2
c0 (tanφs)3/2

ν
√
g(s− 1)d (1 + µ)2

. (48)

The evolution of λmax as function of µ is shown in
Figure 6. It decreases as the relative shear stress excess µ
increases and as the grain diameter gets larger. In the case
of sand grains in a water flow (i.e., ν = 10−6 m2/s, s = 2.7
and φs = 300), we obtain λmax � 0.5 cm for d = 50 µm
and µ = 0.1. From the analytical expression (48), one can
deduce scaling laws for λmax as a function of the physical
parameters of the system. In particular, close to the grain
motion threshold (i.e., µ � 1), the most dangerous mode
scales as λmax ∼ ν/

√
g(s− 1)d.

We can also evaluate the growth rate of the most dan-
gerous mode (see Tab. 1). In the long wavelength limit
and close to the grain motion threshold, the growth rate
increases with the grain diameter and the shear stress ex-
cess and decreases with the fluid viscosity.

It is also important to note that the granular bed is
always unstable as soon as µ > 0 (i.e., as soon as the grain



290 The European Physical Journal B

Table 1. Expressions for the wavelength, the growth rate and the drift velocity of the most dangerous mode at small and large
µ in the case where grain inertia is ignored. A = n c. We recall that n is the exponent of the transport law and c a numerical
constant appearing in the expression of qb.

µ � 1 µ � 1

λmax 30. Θ
−1/2
c0 (tanφs)

−3/2 ν√
g(s−1)d

18. Θ
−1/2
c0 (tan φs)

−1/2 ν

µ
√

(s−1)gd

ωmax 0.02 A (tan φs)
2 Θn+1

c0 µn−1 (s−1)3/2 g3/2 d5/2

ν2 0.375 A Θn+1
c0 µn+1 (s−1)3/2 g3/2 d5/2

ν2

vd 0.53 A (tan φs)
1/2 Θ

n+1/2
c0 µn−1 (s−1) g d2

ν
A (tanφs)

1/2Θ
n+1/2
c0 µn+1 (s−1)g d2

ν
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Fig. 6. Evolution of the most dangerous mode λmax as a func-
tion of µ for different grain diameters in the case where grain
inertia effect is ignored. φs = 300, Θc0 = 0.2, s = 2.7 and
ν = 10−6 m2/s.

motion becomes possible). Furthermore, all the unstable
mode have a growth rate with a negative imaginary part
(see Fig. 5), which means that unstable waves drift along
the sand surface in the direction of the flow. The larger
the wave is, the lower the drift velocity is. The drift ve-
locity Vd of the unstable mode can be easily estimated
(Vd = −Im(ω)/k) and is given in Table 1.

Finally, one should note that the above scaling laws for
the wavelength of the most dangerous and its growth rate,
as well as for the drift velocity of the unstable modes, have
been derived in the long wavelength limit (i.e., β = klν �
1). This limit is justified as soon as one remains close to
the grain motion threshold. Far from it (i.e., µ � 1), the
expression derived for the most dangerous mode [Eq. (47)]
is no longer valid since βmax becomes greater than one.
However, it is still possible to calculate the growth rate
in the short wavelength limit and deduce the expression
for the most dangerous mode in this limit. We obtain:
λmax ∼ √

g d/γ. The most dangerous mode in this limit
is therefore inversely proportional to the shear rate and is
independent of the fluid viscosity.

4.2.3 Case: No gravity and grain inertia

We neglect here the bed slope effect on the sediment trans-
port but we include the grain inertia effect which is ex-
pected to be pertinent when Rep is larger than unity as to
be seen later on. In this case and in the long wavelength
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Fig. 7. Real and imaginary parts of the growth rate for µ =
0.1 and µ = 1, in the case where bed slope effect is ignored.
Θc0 = 0.2, s = 2.7, ν = 10−6 m2/s, and d = 500 µm.

limit the growth rate reads:

Re(ω) =
d2

l2ν
ω0 µ

n−1(1 + µ) ×
[
0.53 β4/3

(
1 −√

3
leq
lν
β

)]
,

(49)

Im(ω) = −0.92
d2

l2ν
ω0 µ

n−1(1 + µ)β4/3. (50)

The grain inertia effect plays a stabilizing role for short
waves and scales as β7/3 (or k7/3). As a consequence, there
exists a band of unstable modes (see Fig. 7) where the
most dangerous one, βmax, is given by:

βmax = 0.33
lν
leq
, (51)

which yields

λmax = 3.5 π
√

3 leq = 3.5 π
√

3 f(Rep)
ρg
ρf
d. (52)

This expression has been derived in the long wavelength
limit where β � 1 and is therefore valid as soon as
leq > lν or equivalently when the particle Reynolds num-
ber is greater than unity. The evolution of λmax as a func-
tion of the relative shear stress excess µ for different grain
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Table 2. Expressions for the wavelength, the growth rate and the drift velocity of the most dangerous mode in the case where
gravity is ignored. Rep = γd2/ν, Rep0 = (s − 1)gd3Θc0/ν2 and A = n c. Rep0 is the value of the particle Reynolds number at
the onset of grain motion. We recall that n is the exponent of the transport law and c is a numerical constant appearing in the
expression of qb.

Rep < 1 1 < Rep < 103

λmax 0.66 Reps d 0.66
Rep

1+0.087 Re0.75
p

s d

ωmax 9. A Θn
c0

(s−1)1/2

s4/3

√
g
d

(Rep−Rep0)n−1

(Rep0)n 9. A Θn
c0

(s−1)1/2

s4/3

√
g
d

(Rep−Rep0)n−1

(Rep0)n (1 + 0.087 Re0.75
p )4/3

vd 0.725 A. Θn
c0

(s−1)1/2

s1/3

√
gd

(Rep−Rep0)n−1

(Rep0)n−1 0.725 A. Θn
c0
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s1/3

√
gd

(Rep−Rep0)n−1
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Fig. 8. Evaluation of the most dangerous mode λmax in the
case where the bed slope effect is ignored. (a) λmax versus
the relative shear stress excess µ for different grain diameters,
(b) λmax versus the particle Reynolds number. Parameters:
Θc0 = 0.2, s = 2.7 and ν = 10−6 m2/s.

diameters is shown in Figure 8. Contrary to the previous
situation, the wavelength of the most dangerous mode in-
creases as the relative shear stress excess increases and as
the grain diameter gets bigger. Furthermore, λmax satu-
rates at high values of the shear stress excess µ. In the
case of sand grains in a water flow (i.e., ν = 10−6 m2/s
and s = 2.7), we get λmax � 6 cm for d = 500 µm and
µ = 0.1.

At small particle Reynolds number (i.e., Rep < 1), we
have seen that f(Rep) ∼ Rep so that the expression for
the most unstable wavelength reduces to:

λmax � 0.66
ρg
ρf
Rep d. (53)
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Fig. 9. Correspondence between the particle Reynolds number
and the relative shear stress excess µ for different grain diame-
ters (Rep = (s− 1) gd3 Θc0(1 + µ)/ν2). Θc0 = 0.2, s = 2.7 and
ν = 10−6 m2/s.

This regime of small particle Reynolds number is encoun-
tered in the case where the grain diameter is small enough
(i.e., d ≤ 100 µm) and the shear stress close enough to the
grain motion threshold (see Fig. 9). The growth rate and
phase velocity associated with the most dangerous mode
is given in Table 2.

At intermediate particle Reynolds number (i.e., 103 >
Rep > 1), we obtain different scalings since f(Rep) does
not vary any more linearly with Rep. This regime is
reached for sufficiently large values of the shear stress ex-
cess µ or large values of the grain diameter (see Fig. 9). In
this regime, the wavelength of the most dangerous mode
scales as:

λmax � 0.66
ρg
ρf

Rep
1 + 0.087Re0.75p

d. (54)

The growth rate and phase velocity associated with this
mode are given in Table 2.

Finally, one should point out that at very large parti-
cle Reynolds number (i.e., Rep > 1000), one could expect
that the flow be turbulent and that our laminar analysis
should therefore break down. A flow between two plates
becomes turbulent when the flow Reynolds number is
greater than 1000. We recall that the flow Reynolds num-
ber is based on a length scale related to the height or width
of the flow and is therefore greater than the correspond-
ing particle Reynolds number. As a consequence, flows
are expected to become turbulent for particle Reynolds
much smaller than 1000, except for quasi-2D flows (i.e., in
Hele-Shaw cell with a gap of order of the grain size), for
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which the flow Reynolds number is of the same order as
the particle Reynolds number.

4.2.4 General case: Gravity and inertia

At last, we analyze the general situation where both sta-
bilizing effects (gravity and grain inertia) are taken into
account and determine when one prevails over the other.
In the general case, at small β the growth rate reads:

Re(ω) =
d2

l2ν
ω0 µ

n−1 × 0.53 (1 + µ)β4/3

×
(

1.− β2/3

0.53 tanφs (1 + µ)
−
√

3
leq
lν
β

)
, (55)

Im(ω) = −0.92
d2

l2ν
ω0 µ

n−1(1 + µ)β4/3. (56)

One can note in expression (55) the presence of the
two terms associated with the gravity and grain inertia
effects which scale respectively as β2 and β7/3. One ex-
pects therefore that gravity effect should prevail for long
wavelength modes and grain inertia should dominate for
modes of smaller wavelengths. The general expression of
the most dangerous mode can be estimated by determin-
ing the extremum of expression (55). It yields:

λmax = 1.75π
√

3leq
[(

1 +
√

1 − r
)1/3

+
(
1 −√

1 − r
)1/3

]3

, (57)

where r measures the magnitude of the gravity effect with
respect to that of the grain inertia one and is given by:

r =
8

147
l2ν

(0.53 tanφs)3 (1 + µ)3 l2eq
. (58)

When r � 1, we recover that λmax ∼ lν/(1 + µ)3/2
[cf. Eq. (47)], and whereas for r � 1, we get λmax =
3.5π

√
3 leq [cf. Eq. (52)]. The critical situation where both

gravity and grain inertia effects are of the same order of
magnitude corresponds to rc = 1. This critical condition
can be expressed in terms of a critical particle Reynolds
number Repc which is found to depend on the Galileo
number Ga defined as Ga = (s − 1)gd3/ν2. The criti-
cal particle Reynolds number Repc as a function of Ga is
shown in Figure 10. When Rep > Repc, inertia effects pre-
vails whereas gravity effect becomes dominant for Rep <
Repc. At low particle Reynolds number (i.e., Rep < 1), it
is found that Repc ∼ (Ga3Θ3

c0/s
2 tanφs)1/6, while at high

particle Reynolds number Repc ∼ (Ga3Θ3
c0/s

2 tanφs)1/4.
As an example, for water flows, we obtain that Repc ≈ 2
for sand grains of diameter d = 50 µm whereas Repc ≈ 80
for d = 500 µm.

The variation of λmax as a function of the particle
Reynolds number is shown in Figure 11 for different grain
diameters. One can clearly see the two regimes, one at low
particle Reynolds number dominated by gravity effect and
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whereas above it gravity effect becomes dominant. Θc0 = 0.2,
φs = 300 and s = 2.7. For water flows, the Galileo number
is equal to Ga = 2.5, 20, 160, 2500 respectively for grains of
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Fig. 11. Evolution of λmax as a function of the particle
Reynolds number Rep for different grain diameters. At small
particle Reynolds number, the gravity effect is dominant, while
at large Rep grain inertia effect prevails. The dotted curves (re-
spectively dot-dashed lines) corresponds to the most dangerous
mode in absence of grain inertia (resp. in absence of gravity ef-
fect). φs = 300, s = 2.7 and ν = 10−6 m2/s.

the other at large particle Reynolds number governed by
the grain inertia effect. One can note also that the regime
where gravity effect prevails shrinks as the grain diameter
increases.

As a conclusion, the main result of this analysis can
be stated as follows: at small particle Reynolds number,
the most dangerous mode is driven by the gravity effect
whereas at larger Rep, it is governed by grain inertia.
For intermediate particle Reynolds number, there exists
a cross-over regime, where the most dangerous mode is
a non-trivial combination of the viscous length and the
equilibrium length given by expression (57).

5 Discussion and conclusion

5.1 Discussion

In this article, we have presented an analytical model for
the instability of a sand bed sheared by a laminar shear
flow. We find that the sand bed is unstable as soon as
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the flow is capable of carrying sand grains. The insta-
bility results from the competition between a destabiliz-
ing mechanism due to fluid inertia and a stabilizing ef-
fect whose origin is different depending on the value of
the particle Reynolds number. At low particle Reynolds
number, bed slope effect prevails whereas at large parti-
cle Reynolds number, the stabilizing mechanism is due to
grain inertia. It is found that at small particle Reynolds
number, the wavelength of the most dangerous mode
scales as the viscous length lν = (ν/γ)1/2 and varies as
the equilibrium length associated with the grain inertia,
leq = f(Rep) (ρg/ρf ) d, for larger particle Reynolds num-
ber. For intermediate particle Reynolds number, there
exists a cross over regime, where the wavelength of the
most amplified mode is a complex combination of the vis-
cous length lν and the equilibrium length leq. In addition,
we derived analytical expressions for the wave velocity
and growth rate of the unstable mode in these different
regimes.

The natural question which arises is the pertinence
of the model and its agreement with the experiments.
First, our predictions are expected to describe correctly
the growth of the ripple pattern only in the first stages of
the instability, before nonlinear effects come into play. Sec-
ond, it turns out that most of experiments on ripple forma-
tion have been achieved in turbulent flows and there are
only few data available in the literature about laminar flow
experiments. Recent careful studies on the onset of sand
ripple formation have been performed by the Bayreuth
group [23,24], but unfortunately they pertains to turbu-
lent flow situations. The flow Reynolds number in those
experiments is of order of 106. As far as we know, there is
only one group investigating ripple formation in a laminar
flow configuration: this is the Orsay group [13]. They study
the ripple formation process in a Hele-Shaw cell (i.e., in a
quasi-2D configuration) where laminar flow conditions are
fulfilled. They have not yet accumulated extensive data to
allow a thorough confrontation with our predictions but
preliminary comparisons can be made. Taking their ex-
perimental parameters corresponding to a regime where
grain inertia is pertinent (Rep ≈ 100 and d = 200 µ) [13],
the estimation of the most dangerous mode drawn from
our predictions (i.e., from λmax = 3.5π

√
3leq), gives a few

centimeters, which seems compatible with the measured
ripple wavelength at the first stages of the instability. On
the other hand, in the regime where grain inertia becomes
negligible, our prediction underestimates the ripple wave-
length by a least of factor of 10. We are looking forward,
in the near future, to make more conclusive comparisons
concerning the scaling laws for the wavelength and drift
velocity of the ripple pattern as a function of the shear
rate, grain diameter and fluid viscosity.

5.2 Conclusion

The aim of the present study was to improve the under-
standing of ripple formation in laminar shear flows. We
have proposed a model where we have taken into account

bed slope and grain inertia effects in the sediment trans-
port. Within this model, we have derived analytical ex-
pressions of the wavelength of the most dangerous mode,
as well as the growth rate and wave velocity of the unsta-
ble modes against all parameters. Unfortunately, exten-
sive experimental data in laminar regime are still laking.
There is therefore a strong need of well-controlled and
well-designed experiments where the growth of the ripples
is investigated in laminar flow configurations.

Parallel to this, the model used here can be refined by
including a stronger coupling between the fluid flow and
the bed. The present model accounts for this coupling only
via the particle transport rate. It may be interesting to
investigate the feedback mechanism between the presence
of sand grains in the fluid and the fluid flow. Another
important issue should be treated, that is the nonlinear
development of the ripple structure. In particular, it is
known that the ripple structure undergoes a coarsening
process in which the ripple wavelength increases in course
of time and it is still not clear whether this coarsening
interrupts or not at long time. To understand the long-
time behavior of the ripples and the coarsening process,
a non-linear analysis based on sound modeling is strongly
needed. It would be, for example, important to determine
for which conditions one can observe the interruption of
the coarsening process and what are the underlying non-
linear mechanisms.

A. Valance is grateful to C. Misbah for numerous and stimu-
lating discussions about sand transport modeling.

Appendix

The integration constant in equation (33) are given by:

C1 = h1
B− −B+

A−B+ −A+B− (59)

C2 = h1
A+ −A−

A−B+ −A+B− (60)

C3 = −h1

2
(61)

C4 =
h1

2
(62)

with

A± =
∫ α

0

dyAi(Y )e±y (63)

B± =
∫ α

0

dyBi(Y )e±y. (64)

Ai and Bi are Airy functions of first and second species.
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